

Introduction to Bias
Bias is a phenomenon that is found in questions
Different views of bias
 a. Bias as epistemic belief: Romero & Han (2004) b. Bias as contextual evidence: Büring & Gunlogson (2000) c. Bias = Epistemic Bias + Evidential Bias: Sudo (2013)
Consensus view on question bias
A particular answer is expected to be correct while the others are not.
Current views on modeling bias
 Bias from compelling evidence: (B&G 2000) ☞ Contextual evidence for ans p ⇒ bias towards p ☞ Contextual evidence against p ⇒ bias towards ¬p
 (1) [Context: My officemate enters the windowless computer room wearing a dripping wet raincoat.] What's the weather like out there? Is it raining?/#Is it sunny?
 Bias from semantic presupposition: (Guerzoni 2003) ☞ Presupposition of ans <i>p</i> is met ⇒ bias towards <i>p</i> ☞ Presupposition of <i>p</i> is not met ⇒ bias isn't <i>p</i>
(2) Did Sam <i>lift a finger</i> to help? (Minimizer Question)
 Bias from unbalanced epistemic partition of answers: ☞ Balanced partition of ans ☞ Inbalanced partition of ans ⇒ there is a bias
(3) Does John really like Mary? (Verum Question)
 Bias from common knowledge in CG: (Caponigro & Sprouse 2007) [∞] CG ⊨ a complete ans p ⇒ bias towards p [∞] CG ⊭ a complete ans p ⇒ bias isn't p
(4) Is the Pope Catholic? (Rhetorical Question)
> Two essential conditions for introducing bias

- The selection of a particular answer as privileged in some way.
- 2. Strict partial-ordered preference ranking of all possible answers.

Nandao-Q: A case study in Bias

> Contextual conditions of *nandao*-Q: negative epistemic bias In Mandarin, *nandao*-Q **necessarily** express bias.

Nandao-p?	Speaker's bias towards p	Neutral	Speaker's bias against p
Contextual evidence for <i>p</i>	×	×	\checkmark
Neutral	×	×	\checkmark
Contextual evidence against <i>p</i>	×	×	\checkmark

Table. Contextual conditions for *nandao-p*?

- *Nandao*-p? is not sensitive to contextual evidence. It is always biased towards *not-p*.
- * Nandao is not Outer Negation like n't in English
- ONPQ: [-positive evidential bias] & [positive epistemic bias]
- *Nandao*-Q: [negative epistemic bias]

Expecting and Asking: A Study of Bias in Nandao-Questions Beibei Xu (billyxu@rutgers.edu)

MACSIM 4, New Brunswick

Syntactic properties of *nandao*-Q ✓ Nandao + Yes/No Questions (Y/N-Q) * Nandao + WH-Q (5) Nandao xiayu-le (6) *Nandao shui bang-guo ni ma? Nandao rain.PERF Y/N-Q Nandao who help-EXP you 'It is not raining, right?' (Intended) 'No one helped yo * Nandao + declaratives * Nandao + A-not-A-Q (8) *Nandao Zhangsan chi-mei-chi fan' (7) *Nandao Lisi hui lai. Nandao Lisi will come Nandao Zhangsan eat-not-eat rice (Intended) 'Zhangsan didn't have a m (Intended) 'Lisi will not come.' > Nandao > Foc (9) (Nandao) zhiyou (*nandao) [Zhangsan]_F (*nandao) zou-le ma? nandao Zhangsan nandao walk-PERF Y/N-Q Nandao only 'It is not the case that only [Zhangsan]_F left, right? > Nandao > Question (10) [_{CP} Zhangsan qu-le Meiguo ma]_{Top}, nandao t_{CP} Zhangsan go-PERF America Y/N-Q nandao 'Zhangsan didn't go to America, right?' * Nandao is not Minimizer Minimizers: all kinds of sentences *Nandao*: Y/N-Q 2. MQs: only rhetorical reading nandao-Q: RQ and non-RQ. * Nandao is not Verum focus

- 1. VERUM: declaratives, Y/N-Q, WH-Q.
- 2. Nandao: Y/N-Q.

What is *nandao*?

> Nandao is a gradable epistemic modal

- *Nandao* \Rightarrow negative epistemic bias: *nandao-p*? [negative epistemic bias] vs *p*? [no epistemic bias]
- In (5), the speaker believes that the correct answer is more likely to be *It is* raining than It is raining.
- . Nandao is a gradable epistemic modal which provides a probability ranking speaker's degree of belief, i.e. nandao-Q satisfies the 2nd essential conditi bias.
- Not all gradable modals can express bias in questions.
- (11)[Context: A has no idea of whether Zhangsan will win tonight's game.] A: Will Zhangsan possibly win tonight? Coach: It's possible.
- A: Henkeneng ma? Coach: Henkeneng./Kenengxing bu da. Probably Y/N-Q Probably probability not big 'Probably./It's not probable.' 'Is it probable?'
- \square Henkeneng-Q has two possible answers {Probably p, not-probably p}, bu no preference ranking between the two answers.
- \square What *henkeneng* provides is two probability rankings between p and $\neg p$: $p >_{\text{PROB}} \neg p, p \leq_{\text{PROB}} \neg p.$
- \blacktriangle It does not conform to the second condition of question bias.
- *Henkeneng-*Q has no bias.

> *Nandao* is a subjective epistemic modal

The syntactic position of *nandao* and its nature of expressing speaker's episten resembles what Lyons (1977) categorizes as subjective epistemic modals whic qualify (i.e. modify) illocutionary force. I propose that nandao is a subjective e modal with the following syntax for *nandao-p*? (cf. Lyons 1977, Rizzi 2004)

(12) [_{ForceP} [*nandao* QUEST] [_{IntP} Y/N-*op* [_{Int} [+WH]] [_{IP} p]]]

	A Gradable Subjective Epistemic
ne? WH-Q ou, right? n? re neal, right?'	 Modeling degrees of belief: probability function μ Halpern's (1990) type 2 probability structure can represent of from a set of possible worlds to the real number between [0, being true (cf. Yalcin 2010, Lassiter 2010). The bias meaning of <i>nandao-p</i>?, i.e. the answer <i>not-p</i> is morranking μ(p) < μ(W-p). How to satisfy the first condition: the highlighted answer Standard question semantics cannot help: all answers are created equal after composition in standard question semantics, i.e. <i>nandao</i> cannot retrieve a specific answer after composition of Y/N-Q. Highlighting can help: The idea of highlighting can help: The idea of highlighting from In work in the standard from the standard fro
	$\begin{aligned} & \text{highlighting from Inquisitive} \\ & \text{Semantics can differentiate answers to} \\ & \text{a question (R&G 2010).} \end{aligned} \qquad \begin{aligned} & \lambda Q(\text{felicitous}(e^*) \\ & \iota p(p \in Q_H \land \mu(p) < \\ & \land W - p \in Q \end{aligned} \\ & (13)Q_H = \llbracket Y/N \text{-}op(p) \rrbracket_H := \llbracket p \rrbracket_H (p \text{ is the question nucleus}). \text{ If } p \leq Q_H \land \mu(p) < \\ & \land W - p \in Q \end{aligned}$
	a disjunction <i>a</i> or <i>b</i> , $[\![p]\!]_{H} = \{a, b\}.$ • <i>Nandao</i> can target the unique highlighted answer. (14)[<i>nandao</i>] := $\lambda Q_{\langle \langle s,t \rangle,t \rangle}$ (<i>felicitous</i> (e^*) $\leftrightarrow Bel(s, \psi_{\langle s,t \rangle}(p \in Q_{I}))$ • Composing <i>nandao</i> - Q For compositional derivations of (12), I adapt Hacquard's (2007) propose the Illocutionary Modification Rule (16). (15)[[QUEST]] := $\lambda Q_{\langle \langle s,t \rangle,t \rangle}$ (QUEST(<i>s</i> , <i>a</i>)(e^*) (<i>Q</i>)) (<i>s</i> is the speaked (16)Illocutionary Modification (IM): If α is a branching node, $\{\beta, \gamma\}$ is the set of α 's daughters, and $[\![\beta]\!](R) \land [\![\gamma]\!](R)$.
	Evolopation of the
s <i>not</i> ng of the ion for	EXplanation of the * Nandao + declaratives As nandao provides a probability ranking for the anchor answer declaratives which do not have alternatives in their denotations. * Nandao + WH-Q
	 The status of highlighted answer(s) is unclear in WH-Q: it r WH-Q does not have both positive and negative forms of an <i>Nandao</i> + A-not-A-Q [[(8)]] = {λw. eat.rice(zhangsan)(w), λw.¬eat.rice(zhangsan) The uniqueness presupposition in (14) is violated: * w/at.
ut there is	I would like to express my sincere gratitude to Veneeta Dayal for extend my thanks to Kirsten Syrett, Simon Charlow, Mingming valuable comments, suggestions, and judgments of the data.
mic bias ch only epistemic	Referen Büring & Gunlogson . 2000. Aren't positive and negative polar Rhetorical questions as questions. SuB11. Guerzoni. 2003 . Why semantics of answers. PhD Diss. Hacquard. 2006 . Speaker-orie behavior. SuB 11. Halpern. 1990 . An analysis of first-order log speech acts. Ms. Lyons. 1977 . Semantics, Vol 2. CUP. Roelofse

c Modal Solution to *nandao*-Q

degrees of belief: μ is the discrete probability function 1]. In this way, $\mu(p)$ represents the probability of p

re likely to be than p, can be represented as a probability

as the target [(Nandao QUEST) [Y/N-op p]] = $felicitous(e^*) \leftrightarrow Bel(s, \mu(\lambda w, \neg p(w)) > \mu(\lambda w, p(w))) \land$ $QUEST(s,a)(e^*)(\{\lambda w.p(w), \lambda w.\neg p(w)\})$ [[Y/N-op p]] =(Nandao QUEST)] = $\{\lambda w. p(w), \lambda w. \neg p(w)\}$ Vandao]](Q) & [[QUEST]](Q)) $[[\mathbf{Y/N} - op \mathbf{p}]]_{\mathrm{H}} =$ (IM) $\{\lambda w. p(w)\}$ QUEST $\leftrightarrow Bel(s, \quad \lambda Q(\text{QUEST}(s, a)(e^*)(Q)))$ $\mu(W-p)$

is an atomic proposition, $[\![p]\!]_{H} = \{p\}$; if p is composed of

 $\mathcal{P}_{\mathrm{H}} \wedge \mu(p) < \mu(W-p) \wedge W-p \in Q)))$

) and Krifka's (2012) semantics for speech act (15) and

ker, *a* is the addressee, e^* is the speech act event)

nd $\llbracket \beta \rrbracket$ and $\llbracket \gamma \rrbracket$ are both in $D_{\langle \pi t \rangle}$, then $\llbracket \alpha \rrbracket := \lambda R \in D_{\pi}$.

Mandarin Data

r and its alternative answer, it cannot be used in

```
may not have highlighted answers.
 answer in its denotation.
```

 $w)(w)\} = [[(8)]]_{H}$ $_{\mathcal{Y}}(p \in Q_{\mathrm{H}} \dots)$

lgement

or her constant guidance and support. Also, I want to Liu, Eason Chen, and audience at SURGE for their

nces

questions the same? Ms. Caponigro & Sprouse. 2007. y even ask: On the pragmatics of questions and the ented vs. Subject-oriented modals: A split in implicative gics of probability. AI 46. Krifka. 2012. Embedding en & van Gool. 2010. Disjunctive questions, intonation, and highlighting. LLM. Romero & Han. 2004. On negative yes/no questions. L&P 27.